Jumat, 12 November 2010

Tahap-Tahap Operasi Dalam Industri Minyak dan Gas Bumi

1. Tahap Eksplorasi
1.1. Lingkungan Terdapatnya Minyak dan Gas Bumi
Hampir sbagian besar minyak dan gas bumi ditemukan pada lapisan batuan pasir dan karbonat. Sangat terbatas terbentuk batuan shale, batuan volkanik ataupun rekahan batuan dasar (basalt).
Studi pendahuluan meliputi geologi regional, yang menyangkut studi komparatif atau perbandingan dengan daerah geologi lainnya yang telah terbukti produktif. studi ini mempertimbangkan formasi yang bisa dijadikan sasaran eksplorasi, struktur yang dapat bertindak sebagai perangkap dan seterusnya.
Pada umumnya lebih tebal lapisan sedimen didapatkan, kemungkinan ditemukannya minyak bumi akan lebih besar. Hal ini disebabkan karena pada umumnya lebih tebal lapisan sedimen itu, tentu lebih banyak lagi formasi yang dapat bertindak sebagai reservoir maupun sebagai batuan induk. Lebih luasnya batuan sedimen tersebar, akan lebih memungkinkan atau lebih leluasa kita mencapai perangkap minyak dan gas bumi.


Gambar 1. Reservoir Antiklin
Gambar 2. Reservoir Patahan
Gambar 3. Reservoir Stratigraphy
Gambar 4. Reservoir Kubah Garam

1. Survey Geologi Permukaan
Pemetaan geologi pada permukaan secara detail dapat dilakukan jika memeng terdapat singkapan. Pemetaan dilakukan pada rintisan dan juga di sepanjang sungai.
2. Survey Seismik
Untuk survey detail, metode seismik merupakan metode yang paling teliti dan dewasa ini telah melampaui kemampuan geologi permukaan. metode yang digunakan adalah khusus metode refleksi. Walaupun pemetaan geologi detail terhadap tutupan telah dilakukan, pengecekan seismik selalu harus dilaksanakan, untuk penentuan kedalam objektif pemboran serta batuan dasar dan juga lapisan yang akan menghasilkan minyak.

Gambar 5. Contoh Hasil Seismik
3. Survey Gravitasi detail
Survey Gravitasi detail kadang-kadang juga digunakan untuk mendetailkan adanya suatu tutupan (closure), terutama jika yang diharapkan adalah suatu intrui kubah garam (salt dome) atau suatu terumbu, daripadanya diharapkan adanya kontras dalam gravitasi antara lapisan penutup dengan batuan reservoir atau batuan garam. Metode ini sudah agak jarang digunakan karena teknologi sismik sudah semakin maju.
1.2. Prognosis
Semua propek yang telah dipilih serta dinilai dalam suatu sistem penilaian, kemudian dipih untuk dilakukan pemboran eksplorasi terhadapnya. Maka semua prospek ini haruslah diberi prognosis. Yang dimaksud Prognosis adalah rencana pemboran secara terperinci serta ramalan-ramalan mengenai apa yang akan ditemui waktu pemboran dan pada kedalaman berapa. Prognosis meliputi ;
1. Lokasi Yang Tepat
Lokasi ini biasanya harus diberikan dalam koordinat. Untuk mencegah terjadinya kesalahan dalam lokasi titik terhadap tutupan struktur, sebaliknya semua koordinat lokasi tersebut penentuannya dilakukan dari pengukuran seismik, terutama jika tutupan ditentukan oleh metode seismik. Jika hal ini terjadi di laut misalnya, maka pengukuran harus dilakukan dari pelampung (buoy) yang sengaja ditinggalkan di laut pada pengukuran seismik, juga dari titik pengukuran radar di darat. Setidak-tidaknya pengukuran lokasi itu harus teliti sekali sebab kemelesetan beberapa ratus meter dapat menyebabkan objektif tidak diketemukan.
2. Kedalaman Akhir
Kedalaman Akhir pemboran eksplorasi biasanya merupakan batuan dasar cekungan sampai mana pemboran itu pada umumnya direncanakan. penntuan kedalaman akhir ini sangat penting karena dengan demikian kita dapat memperkirakan berapa lama pemboran itu akan berlangsung dan dalam hal ini juga untuk berapa lama alat bor itu kita sewa. Penentuan kedalaman akhir ini diasarkan atas data seismik, setelah dilakukan korelasi dengan semua sumur yang ada dan juga dari kecepatan rambat reflektor yang ditentukan sebagai batuan dasar.
3. Latar Belakang Geologi
Alasan untuk pemboran didsarkan atas latar belakang geologi. Maka harus disebutkan keadaan geologi daerah tersebut, alasan pemboran eksplorasi dilakukan di daerah tersebut, jenis tutupan prospek dan juga struktur yang diharapkan dari prospek tersebut.
4. Objektif Atau Lapisan Reservoir Yang Diharapkan
Ini biasanya sudah ditentukan dan stratigrafi regional dan juga diikat dengan refleksi yang didapat dari seismik. Objektif lapisan reservoir ini harus ditentukan pada tingginya kedalaman yang diharapkan akan dicapai oleh pemboran, dimana diperoleh dari perhitungan kecepatan rambat seismik.
5. Kedalaman Puncak Formasi Yang Akan Ditembus
Juga dalam prognosis ini harus kita tentukan formasi-formasi mana yang akan dilalui bor, maka kedalaman puncak (batas) formasi ini harus ditentukan dari data seismik.
6. Jenis Survey Lubang Bor Yang Akan Dilaksanakan
Pada setiap Pemboran eksplorasi selalu dilakukan survey lubang bor. Survey meliputi misalnya peng-Logan lumpur, Peng-Logan Cutting, Peng-Logan Listrik, Peng-Logan Radioaktif, dan sebagainya. Sebaiknya pada pemboran eksplorasi dilakukan survey yang lengkap , selain itu juga harus direncanakan apakah akan dilakukan pengambilan batu inti (coring) atau tidak.
Dalam pembuatan prognosis ini juga ahli geologi harus bekerja sama dengan bagian eksploitasi dan bagian pemboran. Dengan demikian diharapkan diperoleh hasil yang sangat baik dalam pengembangan suatu lapangan nantinya.
Sumber : http://petroleum-zone.blogspot.com

Reservoir Minyak Dan Gas Bumi

1. Pendahuluan
Teknik reservoir adalah suatu ilmu yang mempergunakan kaidah-kaidah ilmu alam dalam memecahkan persoalan-persoalan reservoir. Persoalan-persoalan yang dipecahkan di sini adalah menyangkut penentuan tempat, ukuran serta kinerja reservoir, baik selama produksi maupun  peramalan  untuk  masa  mendatang  sesuai  dengan  anggapan-anggapan  yang digunakan. Hal ini menyangkut apa yang diproduksikan, mekanisme pendorongan, jumlah cadangan minyak di tempat (oil in place), besarnya jumlah minyak yang biasa diperoleh/diproduksikan serta usaha-usaha lain dalam peningkatan recovery minyak.
Reservoir minyak dan/atau gas bumi adalah suatu batuan yang berpori-pori dan permeable tempat minyak dan/atau gas bergerak serta berakumulasi. Melalui batuan reservoir ini fluida dapat bergerak ke arah titik serap (sumur-sumur produksi) dibawah pengaruh tekanan yang dimilikinya atau tekanan yang diberikan dari luar.
Suatu reservoir yang dapat mengandung minyak dan atau gas harus memiliki beberapa syarat  yang terdiri dari unsur-unsur :
  1. Batuan reservoir (reservoir rocks).
  2. Lapisan penutup (sealing cap rocks).
  3. Batuan asal (source rock).
1.1 Batuan Reservoir
Didefinisikan sebagai suatu wadah yang diisi dan dijenuhi minyak dan/atau gas, merupakan suatu lapisan berongga/berpori-pori. Secara teoritis semua batuan, baik batuan beku maupun batuan metaforf dapat bertindak sebagai batuan reservoir, tetapi pada kenyataan ternyata 99% batuan reservoir adalah batuan sedimen.
Jenis batuan reservoir ini akan berpengaruh terhadap besarnya porositas dan permeabilitas. Porositas merupakan perbandingan volume pori-pori terhadap volume batuan keseluruhan, sedangkan permeabilitas merupakan kemampuan dari medium berpori untuk mengalirkan
fluida yang dipengaruhi oleh ukuran butiran, bentuk butiran serta distribusi butiran. Disamping itu batuan reservoir akan dipengaruhi juga oleh fasa fluida yang mengisi pori-pori tersebut berhubungan atau tidak satu sama lainnya.
1.2 Lapisan Penutup
Minyak dan/atau gas terdapat di dalam reservoir. Untuk dapat menahan dan melindungi fluida tersebut, lapisan reservoir ini harus mempunyai penutup di bagial luar lapisannya. Sebagai penutup lapisan reservoir biasanva merupakan lapisan batuan yang rnempunyai sifat kedap (impermeabel), yaitu sifat yang tidak dapat meloloskan fluida yang dibatasinya.
Jadi lapisan penutup didefinisikan sebagai lapisan yang berada di bagian atas dan tepi reservoir yang dapat dan melindungi fluida yang berada di dalam lapisan di bawahnya, hal ini akan mengakumulasikan minyak dalam reservoir.
1.3 Batuan Asal
Pada saat terjadinya minyak dan/atau gas yang berasal dari organisme purba terdapat di dalam batuan asal (source rock), dengan kondisi tekanan dan temperatur tertentu kemudian berubah menjadi minyak atau gas bumi, kemudian bermigrasi dan terperangkap pada batuan berpori yang disebut sebagai batuan reservoir.
2. Sifat Batuan Reservoir
2.1 Porositas
Porositas didefinisikan sebagai perbandingan antara volume batuan yang tidak terisi oleh padatan  terhadap  volume  batuan  secara  keseluruhan.  Berdasarkan  sifat-sifat  batuan reservoir, maka porositas dapat dibagi lagi menjadi porositas effektif dan porositas absolut.
Porositas effektif yaitu perbandingan volume pori-pori yang saling berhubungan terhadap volume batuan secara keseluruhan. Porositas absolut adalah perbandingan volume pori-pori total tanpa memandang saling berhubungan atau tidak, terhadap volume batuan secara keseluruhan.
2.2 Permeabilitas
Permeabilitas batuan didefinisikan sebagai kemampuan batuan tersebut untuk melewatkan fluida dalam medium berpori-pori yang saling berhubungan.
Dikenal tiga istilah untuk permeabilitas yaitu permeabilitis absolut, permeabilitas effektif dan permeabilitas relatif.
Permeabilitas absolut dipakai untuk aliran fluida satu fasa. Permeabilitas effektif digunakan untuk aliran yang terdiri dari dua phasa atau lebih yang dikenal sebagai : Ko, Kw, Kg. Permeabilitas  relatif adalah  perbandingan  permeabilitas  effektif  terhadap  permeabilitas absolut, ini tergantung pada jenis fluidanya.
2.3 Saturasi
Reservoir mengandung fluida-fluida berupa; minyak, gas, atau air. Saturasi didefisikan sebagai fraksi salah satu fluida terhadap pori-pori dari batuan. Di sini dikenal So, Sw, dan Sg,
di mana :
saturasi
Untuk  mendapatkan  harga  saturasi  dapat  dilakukan  di  laboratorium  dengan  prinsip penguapan air dan pelarutan minyak. Untuk ini dapat digunakan alat-alat : ASTM Extraction, Soxlet Extractor.
2.4 Kebasahan (wettability)
Kebasahan didefinisikan sebagai suatu kecenderungan suatu fluida untuk menyebar atau menempel pada permukaan padatan dengan adanya fluida lain yang immiscible.
Kecenderungan untuk menyebar atau menempel ini karena adanya gaya adhesi, yang merupakan faktor tegangan permukaan. Faktor inii pula yang menentukan fluida mana yang akan lebih membasahi suatu padatan.
energi-antar-muka
Untuk  menentukan  energi  antar  muka  sistem  di  atas,  biasanya  dapat  dilakukan  di laboratorium secara langsung. Harga θ disebut sebagai sudut kontak, berkisar antara 0o dan180o. Untuk θ > 90o, sifat kebasahan batuan reservoir disebut sebagai basah minyak (oil wet), sedangkan Untuk θ < 90o, sifat kebasahan batuan reservoir disebut sebagai basah air (water wet).
3. Tekanan Reservoir
Didefisikan sebagai tekanan fluida di dalam pori-pori reservoir, yang berada dalam keadaan setimbang, baik sebelum maupun sesudah dilakukannya suatu proses produksi.
Berdasarkan hasil penyelidikan, besarnya tekanan reservoir mengikuti suatu hubungan yang linier dengan kedalaman reservoir tersebut. Hal ini diinterpretasikan sebagai akibat dari penyingkapan perluasan formasi batuan reservoir tersebut ke permukaan, sehingga reservoir menerima tekanan hidrostatis fluida pengisi formasi. Berdasarkan ketentuan ini, maka pada umumnya gradient tekanan berkisar antara 0,435 psi/ft.
Dengan adanya tekanan overburden dari batuan di atasnya, gradient tekanan dapat lebih besar dari harga tersebut di atas, hal ini tergantung pada kedalaman reservoir. Dengan adanya kebocoran gas sebelum/selama umur geologi migrasi minyak, dapat mengakibatkan tekanan reservoir akan lebih rendah.
Besarnya tekanan reservoir dapat diketahui dengan merata-ratakan hasil pengukuran bottom hole pressure sumur statis. Pengukurannya dapat diperoleh langsung dengan pengukuran sub surface bomb.
Dengan  metoda  analisa  pressure  buildup,  sebagaimana  suatu  persamaan  telah disederhanakan oleh Horner, dapat diketahui bottom hole pressure sebagai fungsi dari waktu penutupan.
hole-pressure
Dalam sejarah produksi, besarnya tekanan akan selalu menurun. Kecepatan penurunannya tergantung pada pengaruh-pengaruh tenaga yang berada di luar reservoir, dalam hal ini adalah mekanisme pendorong.
4. Temperatur Reservoir
Temperatur reservoir merupakan fungsi dari kedalaman. Hubungan ini dinyatakan oleh gradient geothermal. Harga gradient geothermal itu berkisar antara 0,3 oF/100 ft sampai dengan 4 oF/ 100 ft.
5. Perubahan Phasa
Perubahan fasa sistem hidrokarbon dalam bentuk cairan dan gas merupakan fungsi dari tekanan, temperatur serta komposisinya.
Menurut Hawkin NF., fasa adalah bagian dan sistem yang sifat-sifatnya homogen dalam komposisi, memiliki batas permukaan secara fisis serta terpisah secara mekanis dengan fasa lainnya yang mungkin ada.
Fluida hidrokarbon suatu sistem yang heterogen, sangat dipengaruhi oleh jumlah komponen yang ada di dalamnya. Untuk itu analisa fasa fluida hidrokarbon dilakukan dalam berbagai komponen yang kemudian diinterpretasikan dalam  diagram tekanan dan temperatur.
Berdasarkan posisi tekanan dan temperatur pada diagram phasa, kita dapat membedakan berbagai type reservoir, misalnya gas condensate reservoir, gas reservoir dan lain-lain. Berdasarkan penomena perubahan fasa fluida ini, kita dapat merencanakan fasilitas yang baik untuk sistem produksi, separator, pemipaan serta storage/cara penyimpanannya.
6. Karakteristik fluida hidrokarbon
Fluida  reservoir  umumnya  terdiri  dari  minyak,  gas  dan  air  formasi.  Minyak  dan  gas kebanyakan merupakan campuran yang rumit berbagai senyawa hidrokarbon, yang terdiri dari golongan naftan, parafin, aromatik dan sejumlah kecil gabungan oksigen, nitrogen, dan belerang.
Karakteristik-karakteristik fluida hidrokarbon yang berhubungan dengan sifat fisis, dinyatakan dalam berbagai besaran :
  1. Faktor volume formasi gas.
  2. Kelarutan gas.
  3. Faktor volume formasi minyak.
  4. Faktor volume formasi dwi-fasa.
  5. Viskositas.
  6. Berat jenis (oAPI)
6.1 Faktor volume formasi gas (Bg)
Faktor volume formasi gas didefinisikan sebagal volume (dalam barrels) yang ditempati oleh suatu standard cubic feet gas (60 oF, 14,7 psi) bila dikembalikan pada keadaan temperatur dan tekanan reservoir sebagal berikut :
volume-formasi

6.2 Kelarutan gas dalam minyak (Rs)
Kelarutan gas (Rs) didefinisikan sebagai banyaknya cubic feet gas (dalam tekanan dan temperatur  standard)  yang  berada  dalam  larutan  minyak  mentah  satu  barrel  tangki pengumpulan minyak, ketika minyak dan gas kedua-duanya masih berada dalam keadaan temperatur dan tekanan reservoir.
Rs merupakan fungsi dari tekanan, untuk minyak mentah yang jenuh, penurunan tekanan akan nengakibatkan kelarutan gas menurun karena gas yang semula larut dalam minyak mentah pada tekanan yang lebih rendah. Untuk minyak mentah yang tak jenuh, penurunan tekanan sampai tekanan gelembung, tidak akan menurunkan kelarutan gas, tetapi setelah melewati tekanan gelembung, penurunan tekanan mengakibatkan menurunnya kelarutan gas.
6.3 Faktor volume formasi minyak (Bo)
Faktor volume formasi minyak (Bo) didefinisikan sebagai perbandingan V1 barrel minyak pada keadaan reservoir terhadap V2 barrel minyak pada tangki pengumpul (60 oF, 14,7 psi). V1 - V2  adalah berupa gas yang dibebaskan karena penurunan tekanan dan temperatur.
Penaksiran faktor volume formasi minyak dapat dilakukan dengan tiga cara, berdasarkan data-data yang tersedia dan prosen ketelitian yang dibutuhkan.
6.4 Faktor volume formasi dwi-fasa (Bt)
Faktor volume formasi dwi-fasa (Bt) didefinisikan sebagai volume yang ditempati oleh minyak sebanyak satu barrel tangki pengumpul ditambah dengan gas bebas yang semula larut dalam sejumlah minyak tersebut.
Harga Bt dapat ditentukan dan karakteristik cairan reservoir yang disebutkan terdahulu, yang digambarkan sebagai :
faktor-volume
6.5 Viskositas (μ)
Viskositas suatu cairan adalah suatu ukuran tentang besarnya keengganan cairan itu untuk mengalir. Viskositas didefinisikan sebagai besarnya gaya yang harus bekerja pada satu satuan luas bidang horizontal yang terpisah sejauh satu satuan jarak dan suatu bidang horizontal lain, agar relatip terhadap bidang kedua ini, bidang pertama bergerak sebesar satu satuan kecepatan. Diantara kedua bidang horizontal inii terdapat cairan yang dimaksud.
Umumnya viskositas dipengaruhi langsung oleh tekanan dan temperatur. Hubungan tersebut adalah :
  • Viskositas akan menurun dengan naiknya temperatur.
  • Viskositas akan naik dengan naiknya tekanan, dimana tekanan tersebut semata-mata untuk pemanfaatan cairan.
  • Viskositas akan naik dengan bertambahnya gas dalam larutan.
6.6 Berat jenis (oAPI)
Berat jenis (oAPI) minyak menunjukkan kualitas fluida hidrokarbon. Apakah hidrokarbon tersebut termasuk minyak ringan, gas atau minyak berat. Besaran ini dinyatakan dalam :
API

Semakin besar harga oAPI berarti berat jenis minyak semakin kecil dan sebaliknya.
7. Mekanisme Pendorongan
Berdasarkan mekanisme pendorongan  yang  menyebabkan  minyak  dan/atau  gas dapat bergerak ke titik serap (sumur produksi), reservoir minyak dan/atau gas dapat dibagi atas :
  1. Water drive reservoir
  2. Solution gas drive
  3. Gas cap drive reservoir
  4. Combination drive reservoir
7.1 Water drive reservoir
Pada  reservoir  dengan  type  pendorongan  "water  drive”,  energi  yang  menyebabkan perpindahan minyak dari reservoir ke titik serap adalah disebabkan oleh; pengembangan air, penyempitan pori-pori dari lapisan dan sumber air di permukaan bumi yang berhubungan dengan formasi yang mengandung 100% air (aquifer) sebagai akibat adanya penurunan tekanan selama produksi.
Air sebagai suatu fasa yang sering berada bersama-sama dengan minyak dan/atau gas dalam suatu reservoir yang mengandung hidrokarbon tersebut seringkali merupakan suatu fasa kontinu dalam suatu formasi sedimen yang berdekatan dengan reservoir tersebut.
Perubahan tekanan dalam reservoir minyak sebagai akibat dan  pada produksi minyak melalui sumur akan diteruskan kedalam aquifer. Terbentuknya gradient tekanan ini akan mengakibatkan  air  mengalir  ke  dalam  lapisan  minyak (merembes)  bila  permeabilitas disekitarnya memungkinkan. Secara umum dapat dikatakan bahwa aquifer merupakan suatu tenaga yang membantu dalam hal pendorongan minyak.
Dilihat dari sudut gerakan air dari aquifer ke dalam Iapisan minyak, maka aquifer dapat dibedakan atas 3 macam :
  1. Gerakan air dari bawah (bottom water drive).
  2. Gerakan air dari samping (edge water drive).
  3. Gerakan air dari bawah dan dari samping (bottom & edge water  drive).
7.1.1. Gerakan air dari bawah (bottom water drive)
Dalam hal ini, reservoir minyak terdapat pada puncak suatu batuan reservoir, sedangkan di bawahnya adalah air yang mengandung tenaga pendorongan. Tebal dan lapisan yang mengandung minyak relatif tipis dibandingkan tebal aquifer.
7.1.2. Gerakan air dari samping (edge water drive)
Dalam keadaan ini tenaga pendorongan minyak berasal dari aquifer dalam arah tidak vertikal dari bawah ke atas, tetapi dari samping.
7.1.3. Gerakan air dari bawah dan dari samping (bottom & edge water drive)
Pada keadaan ini tenaga pendorongan minyak berasal dari kombinasi antara “bottom water drive” dan “edge water drive".
Dari kurva sejarah produksi suatu reservoir dengan water-drive, memperlihatkan bahwa pada permulaan produksi, tekanan akan turun dengan sedikit tajam. Karena air memerlukan waktu dulu untuk mengisi ruangan yang ditinggalkan oleh minyak yang diproduksi. Kemudian tekanan akan menurun secara perlahan-lahan.
Pada reservoir water drive, gas tidak memegang peranan, sehingga perbandingan produksi gas terhadap produksi minyak (GOR) dapat dianggap konstan. Sedangkan perbandingan produksi air terhadap produksi minyak (WOR) akan naik, karena air yang mendorong dari belakang mungkin saja akan melewati minyak yang didorongnya akibat dari sifat mobiIity-nya, sehingga air akan terproduksi. Recovery minyak dari type pendorongan "water drive" ini berkisar 30% - 60%.
7.2. Solution Gas Drive Reservoir
Pada reservoir dengan type pendorongan “solution gas drive” energi yang menyebabkan minyak bergerak ke titik serap berasal dari ekspansi volumetrik larutan gas yang berada dalam minyak dan pendesakan minyak akibat berkurangnya tekanan karena produksi. Hal ini akan menyebabkan gas yang larut di dalam minyak akan ke luar berupa gelembunggelembung yang tersebar merata di dalam phasa minyak. Penurunan tekanan selanjutnya akan menyebabkan gelembung-gelembung gas tadi akan berkembang, sehingga mendesak minyak untuk mengalir ke daerah yang bertekanan rendah.
Pada kurva sejarah produksi suatu lapangan yang reservoirnya mempunyai mekanisme pendorong "solution gas drive" akan memperlihatkan bahwa pada saat produksi baru dimulai, tekanan turun dengan perlahan dan selanjutnya menurun dengan cepat. Hal ini disebabkan karena pada saat pertama, gas belum bisa bergerak, karena saturasinya masih berada di bawah saturasi kritis, setelah saturasi kritis dilampaui, barulah tekanan turun dengan cepat.
Perbandingan gas terhadap minyak (GOR), terlihat mula-mula hampir konstan, selanjutnya akan naik dengan cepat, dan kemudian turun lagi. Hal ini disebabkan karena mula-mula saturasi gas masih berada dibawah saturasi kritisnya. Sehingga permeabilitasnya masih sama dengan nol. Setelah saturasi kritis dilampaui, gas mulai bergerak dan membentuk saturasi yang kontinu. Kemudian gas ikut terproduksi bersama minyak.
Semakin lama GOR semakin besar, ini disebabkan karena mobility gas lebih besar dari mobility minyak sehingga terjadi penyimpangan/slippage dimana gas bergerak lebih cepat dari minyak.
Oleh karena gas lebih banyak diproduksikan, lama kelamaan kandungan gasnya semakin berkurang sehingga recovery-nya akan turun. Recovery minyak dengan jenis “solution gas drive reservoir” berkisar 5 - 20 %.
7.3. Gas Cap Drive Reservoir
Pada reservoir dengan mekanisme pendorongan “gas cap drive” energi pendorongan berasal dari ekspansi gas bebas yang terdapat pada gas bebas (gas cap). Hal ini akan mendorong minyak ke arah posisi yang bertekanan rendah yaitu ke arah bawah struktur dan selanjutnya ke arah sumur produksi.
Gas yang berada di gas cap ini sudah ada sewaktu reservoir itu ditemukan atau bisa juga berasal dari gas yang terlarut dalam minyak dan akan ke luar dari zone minyak bila tekanan reservoirnya di bawah bubble point pressure.
Sejarah produksi dari reservoir dengan gas cap drive memperlihatkan suatu kurva dimana tekanan akan menurun lebih cepat dibandingkan dengan water drive reservoir. Sedangkan GOR-nya akan terus naik sampai akhirnya hanya gas yang terproduksi. Hal ini disebabkan karena mobilitas gas lebih besar dibandingkan dengan mobilitas minyak. Kemungkinan slippage dimana gas akan mendahului minyak, lebih besar sehingga gas ikut terproduksi. Akibatnya effisiensi pendorongannya akan berkurang dari semestinya. Recovery minyak pada jenis “gas cap reservoir“ berkisar 20 - 40 %.
7.4. Combination Drive Reservoir
Pada reservoir type ini, mekanisme pendorongan minyak dapat berasal dari kombinasi antara water drive dengan solution gas drive ataupun kombinasi antara water drive dengan gas cap drive. Pada banyak reservoir, keempat mekanisme pendorongan dapat bekerja secara simultan, tetapi biasanya salah satu atau dua yang lebih dominan.
8.  Perolehan Minyak Tahap Lanjut (Enhanced Oil Recovery)
Adalah tahap lanjut untuk memperoleh bagian minyak bumi yang masih tertinggal di dalam batuan reservoir pada tahap perolehan awal (primary recovery). Terdapat berbagai cara perolehan minyak tahap lanjut ini, yaitu dengan cara injeksi fluida tak tercampur (non miscible flood) : injeksi air, injeksi gas; injeksi fluida tercampur (miscible flood) : injeksi gas CO2, injeksi
gas tak reaktif, injeksi gas yang diperkaya, injeksi gas kering ; injeksi kimiawi (chemical injection) : injeksi alkalin, injeksi polimer, injeksi surfactant; injeksi termal (thermal injection) : injeksi air panas, injeksi uap air, pembakaran di lubang sumur dan lain-lain.
Dari : Buku Pintar Migas Indonesia, Reservoir Minyak Dan Gas Bumi oleh  Sudjati Rachmat.

Asal Mula Minyak Bumi

Bagaimana terjadinya minyak dan gas bumi ?

Ada tiga faktor utama dalam pembentukan minyak dan/atau gas bumi, yaitu : Pertama, ada “bebatuan asal” (source rock) yang secara geologis memungkinkan terjadinya pembentukan minyak dan gas bumi.

Kedua, adanya perpindahan (migrasi) hidrokarbon dari bebatuan asal menuju ke “bebatuan reservoir” (reservoir rock), umumnya sandstone atau limestone yang berpori-pori (porous) dan ukurannya cukup untuk menampung hidrokarbon tersebut.

Ketiga, adanya jebakan (entrapment) geologis. Struktur geologis kulit bumi yang tidak teratur bentuknya, akibat pergerakan dari bumi sendiri (misalnya gempa bumi dan erupsi gunung api) dan erosi oleh air dan angin secara terus menerus, dapat menciptakan suatu “ruangan” bawah tanah yang menjadi jebakan hidrokarbon. Kalau jebakan ini dilingkupi oleh lapisan yang impermeable, maka hidrokarbon tadi akan diam di tempat dan tidak bisa bergerak kemana-mana lagi.
Temperatur bawah tanah, yang semakin dalam semakin tinggi, merupakan faktor penting lainnya dalam pembentukan hidrokarbon. Hidrokarbon jarang terbentuk pada temperatur kurang dari 65 oC dan umumnya terurai pada suhu di atas 260 oC. Hidrokarbon kebanyakan ditemukan pada suhu moderat, dari 107 ke 177 oC.
geologic_time

Apa saja komponen-komponen pembentuk minyak bumi ?

Minyak bumi merupakan campuran rumit dari ratusan rantai hidrokarbon, yang umumnya tersusun atas 85% karbon (C) dan 15% hidrogen (H). Selain itu, juga terdapat bahan organik dalam jumlah kecil dan mengandung oksigen (O), sulfur (S) atau nitrogen (N).
Apakah ada perbedaan dari jenis-jenis minyak bumi ?
Ya, ada 4 macam yang digolongkan menurut umur dan letak kedalamannya, yaitu: young-shallow, old-shallow, young-deep dan old-deep. Minyak bumi young-shallow biasanya bersifat masam (sour), mengandung banyak bahan aromatik, sangat kental dan kandungan sulfurnya tinggi. Minyak old-shallow biasanya kurang kental, titik didih yang lebih rendah, dan rantai paraffin yang lebih pendek. Old-deep membutuhkan waktu yang paling lama untuk pemrosesan, titik didihnya paling rendah dan juga viskositasnya paling encer. Sulfur yang terkandung dapat teruraikan menjadi H2S yang dapat lepas, sehingga old-deep adalah minyak mentah yang dikatakan paling “sweet”. Minyak semacam inilah yang paling diinginkan karena dapat menghasilkan bensin (gasoline) yang paling banyak.

Berapa lama waktu yang dibutuhkan untuk membentuk minyak bumi ?

Sekitar 30-juta tahun di pertengahan jaman Cretaceous, pada akhir jaman dinosaurus, lebih dari 50% dari cadangan minyak dunia yang sudah diketahui terbentuk. Cadangan lainnya bahkan diperkirakan lebih tua lagi. Dari sebuah fosil yang diketemukan bersamaan dengan minyak bumi dari jaman Cambrian, diperkirakan umurnya sekitar 544 sampai 505-juta tahun yang lalu.

Para geologis umumnya sependapat bahwa minyak bumi terbentuk selama jutaan tahun dari organisme, tumbuhan dan hewan, berukuran sangat kecil yang hidup di lautan purba. Begitu organisme laut ini mati, badannya terkubur di dasar lautan lalu tertimbun pasir dan lumpur, membentuk lapisan yang kaya zat organik yang akhirnya akan menjadi batuan endapan (sedimentary rock). Proses ini berulang terus, satu lapisan menutup lapisan sebelumnya. Lalu selama jutaan tahun berikutnya, lautan di bumi ada yang menyusut atau berpindah tempat.

Deposit yang membentuk batuan endapan umumnya tidak cukup mengandung oksigen untuk mendekomposisi material organik tadi secara komplit. Bakteri mengurai zat ini, molekul demi molekul, menjadi material yang kaya hidrogen dan karbon. Tekanan dan temperatur yang semakin tinggi dari lapisan bebatuan di atasnya kemudian mendistilasi sisa-sisa bahan organik, lalu pelan-pelan mengubahnya menjadi minyak bumi dan gas alam. Bebatuan yang mengandung minyak bumi tertua diketahui berumur lebih dari 600-juta tahun. Yang paling muda berumur sekitar 1-juta tahun. Secara umum bebatuan dimana diketemukan minyak berumur antara 10-juta dan 270-juta tahun.

JENIS BATUAN RESRVOAR

Jenis-Jenis Perangkap Minyak Bumi


Dalam Sistem Perminyakan, memiliki konsep dasar berupa distribusi hidrokarbon didalam kerak bumi dari batuan sumber (source rock) ke batuan reservoar. Salah satu elemen dari Sistem Perminyakan ini adalah adanya batuan reservoar, dalam batuan reservoar ini, terdapat beberapa faktor penting diantaranya adalah adanya perangkap minyak bumi.
Perangkap minyak bumi sendiri merupakan tempat terkumpulnya minyak bumi yang berupa perangkap dan mempunyai bentuk konkav ke bawah sehingga minyak dan gas bumi dapat terjebak di dalamnya.
Perangkap minyak bumi ini sendiri terbagi menjadi Perangkap Stratigrafi, Perangkap Struktural, Perangkap Kombinasi Stratigrafi-Struktur dan perangkap hidrodinamik.
  • Perangkap Stratigrafi
Jenis perangkap stratigrafi dipengaruhi oleh variasi perlapisan secara vertikal dan lateral, perubahan facies batuan dan ketidakselarasan dan variasi lateral dalam litologi pada suatu lapisan reservoar dalam perpindahan minyak bumi. Prinsip dalam perangkap stratigrafi adalah minyak dan gas bumi terperangkap dalam perjalanan ke atas kemudian terhalang dari segala arah terutama dari bagian atas dan pinggir, hal ini dikarenakan batuan reservoar telah menghilang atau berubah fasies menjadi batu lain sehingga merupakan penghalang permeabilitas (Koesoemadinata, 1980, dengan modifikasinya). Dan jebakan stratigrafi tidak berasosiasi dengan ketidakselarasan seperti Channels, Barrier Bar, dan Reef, namun berasosiasi dengan ketidakselarasan seperti Onlap Pinchouts, dan Truncations.
Pada perangkap stratigrafi ini, berasal dari lapisan reservoar tersebut, atau ketika terjadi perubahan permeabilitas pada lapisan reservoar itu sendiri. Pada salah satu tipe jebakan stratigrafi, pada horizontal, lapisan impermeabel memotong lapisan yang bengkok pada batuan yang memiliki kandungan minyak. Terkadang terpotong pada lapisan yang tidak dapat ditembus, atau Pinches, pada formasi yang memiliki kandungan minyak. Pada perangkap stratigrafi yang lain berupa Lens-shaped. Pada perangkap ini, lapisan yang tidak dapat ditembus ini mengelilingi batuan yang memiliki kandungan hidrokarbon. Pada tipe yang lain, terjadi perubahan permeabilitas dan porositas pada reservoar itu sendiri. Pada reservoar yang telah mencapai puncaknya yang tidak sarang dan impermeabel, yang dimana pada bagian bawahnya sarang dan permeabel serta terdapat hidrokarbon.
Pada bagian yang lain menerangkan bahwa minyak bumi terperangkap pada reservoar itu sendiri yang Cut Off up-dip, dan mencegah migrasi lanjutan, sehingga tidak adanya pengatur struktur yang dibutuhkan. Variasi ukuran dan bentuk perangkap yang demikian mahabesar, untuk memperpanjang pantulan lingkungan pembatas pada batuan reservoar terendapkan.
  • Perangkap Struktural
Jenis perangkap selanjutnya adalah perangkap struktural, perangkap ini Jebakan tipe struktural ini banyak dipengaruhi oleh kejadian deformasi perlapisan dengan terbentuknya struktur lipatan dan patahan yang merupakan respon dari kejadian tektonik dan merupakan perangkap yang paling asli dan perangkap yang paling penting, pada bagian ini berbagai unsur perangkap yang membentuk lapisan penyekat dan lapisan reservoar sehingga dapat menangkap minyak, disebabkan oleh gejala tektonik atau struktur seperti pelipatan dan patahan (Koesoemadinata, 1980, dengan modifikasinya).
  • Jebakan Patahan
Jebakan patahan merupakan patahan yang terhenti pada lapisan batuan. Jebakan ini terjadi bersama dalam sebuah formasi dalam bagian patahan yang bergerak, kemudian gerakan pada formasi ini berhenti dan pada saat yang bersamaan minyak bumi mengalami migrasi dan terjebak pada daerah patahan tersebut, lalu sering kali pada formasi yang impermeabel yang pada satu sisinya berhadapan dengan pergerakan patahan yang bersifat sarang dan formasi yang permeabel pada sisi yang lain. Kemudian, minyak bumi bermigrasi pada formasi yang sarang dan permeabel. Minyak dan gas disini sudah terperangkap karena lapisan tidak dapat ditembus pada daerah jebakan patahan ini.
  • Jebakan Antiklin
Kemudian, pada jebakan struktural selanjutnya, yaitu jebakan antiklin, jebakan yang antiklinnya melipat ke atas pada lapisan batuan, yang memiliki bentuk menyerupai kubah pada bangunan. Minyak dan gas bumi bermigrasi pada lipatan yang sarang dan pada lapisan yang permeabel, serta naik pada puncak lipatan. Disini, minyak dan gas sudah terjebak karena lapisan yang diatasnya merupakan batuan impermeabel.
  • Jebakan Struktural lainnya
Contoh dari perangkap struktur yang lain adalah Tilted fault blocks in an extensional regime, marupakan jebakan yang bearasal dari Seal yang berada diatas Mudstone dan memotong patahan yang sejajar Mudstone. Kemudian, Rollover anticline on thrust, adalah jebakan yang minyak bumi berada pada Hanging Wall dan Footwall. Lalu, Seal yang posisinya lateral pada diapir dan menutup rapat jebakan yang berada diatasnya.
  • Perangkap Kombinasi
Kemudian perangkap yang selanjutnya adalah perangkap kombinasi antara struktural dan stratigrafi. Dimana pada perangkap jenis ini merupakan faktor bersama dalam membatasi bergeraknya atau menjebak minyak bumi. Dan, pada jenis perangkap ini, terdapat leboh dari satu jenis perangkap yang membenuk reservoar. Sebagai contohnya antiklin patahan, terbentuk ketika patahan memotong tegak lurus pada antiklin. Dan, pada perangkap ini kedua perangkapnya tidak saling mengendalikan perangkap itu sendiri.
  • Perangkap Hidrodinamik
Kemudian perangkap yang terakhir adalah perangkap hidrodinamik. Perangkap ini sangta jarang karena dipengaruhi oleh pergerakan air. Pergerakan air ini yang mampu merubah ukuran pada akumulasi minyak bumi atau dimana jebakan minyak bumi yang pada lokasi tersebut dapat menyebabkan perpindahan. Kemudian perangkap ini digambarkan pergerakan air yang biasanya dari iar hujan, masuk kedalam reservoar formasi, dan minyak bumi bermigrasi ke reservoar dan bertemu untuk migrasi ke atas menuju permukaan melalui permukaan air. Kemudian tergantung pada keseimbangan berat jenis minyak, dan dapat menemukan sendiri, dan tidak dapat bergerak ke reservoar permukaan karena tidak ada jebakan minyak yang konvensional.

peralatan pengeboran



NO
ALAT
ARTI
PENGERTIAN
1.
Crown block
Kontrol kabel bor
Kerekan banyak yang dipasang diatas derek
2.
Mast
Menara tiang
Menara bor yang bisa ditegakan di atas kendaraanya
3.
Catline boom
Tali bulan
Tali manila yang dengan blok derek yang digunakan untuk menggerakan bermacam – macam barang
4.
Racking platform
Sandaran pipa
Menyusun pipa yang baru dicabut dari lubang sumur
5.
Drilling line
Kabel bor
Kaber baja yang terpsang antara mesin kerek katrol puncal dan kerekan
6.
Travelling block
Kerek bor
Sistem kerja yang dipakai bersama katrolpucak untuk mengangkat
7.
Hook
Kait putar
Alat berbentuk kail besar tempat swivel bergantung
8.
Swivol
swivel
Peralatan yang berputar bebas
9.
Rotary hose
Selang putar
Selang karet untuk menyalurkan lumpur pengeboran dari pompa lumpur
10.
Stand pipe
Pipa tekan
Kolom vertikal yang dalam proses katalitik fluida diisi dengan katalis bubuk
11.
Drawworks
Pusat penggerak
Peralatan untuk menaik turunkan pipa dan menggerakan meja putar
12.
Drillers console
Juru bor
Kepala kelompok pekerja bor yang mengambil semua keputusan
13.
Pipe setback
Pipa pemasak
Gulungan atau pipa yang terpasang dalam ruang pemanas
14.
Drill floor
Pipa pekerja
Anggota regu yang tugasnya di lantai pengeboran
15.
Rotary table
Meja putar
Meja bundar diatas dasar perangkat pemboran yang dioprasikan oleh tenaga mesin untuk memutar rangkaian pipa bor
16.
Substructure
Substruktur
Bangunan yang menjadi dudukan menara bor
17.
Blow out preventer
Pencegahan semburan liar (psl)
Peralatan yang dipasang di kepala sumur untuk tujuan mengendalikan tekanan di anulus antara pipa selubang dan pipa bor
18.
Dog house
Rumah jaga
Bangunan kecil yang ditempatkan di dekat lantai pengeboran
19.
Choke maniford
Penjepit
Sumbat berlubang yang dipasang dikepala sumur untuk membatasi aliran dengan tujuan mengatur tingkat produksi
20.
Gas flare
Gas tersuar bakar
Gas terproduksi yang terpasang dibakar karna tidak dapat ditangani oleh fasilitas lapangan yang tersedia
21.
Mud gas separator
Lumpur gas
Campuran yang terdiri atas air dan bahan berupa serbuk seperti lempung
22.
Shale shaker
Pengayak serbuk bor
Pengayak serpih berupa kasa bergetar untuk memisahkan serbuk bor dari lumpur yang keluar dari sumur
23.
Degasser
Derajat api
Berat jenis minyak yang dinyatakan dalam satuan derajat api